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Abstract
Purpose  We aimed to use deep learning with convolutional neural network (CNN) to discriminate between benign and 
malignant breast mass images from ultrasound.
Materials and Methods  We retrospectively gathered 480 images of 96 benign masses and 467 images of 144 malignant 
masses for training data. Deep learning model was constructed using CNN architecture GoogLeNet and analyzed test data: 
48 benign masses, 72 malignant masses. Three radiologists interpreted these test data. Sensitivity, specificity, accuracy, and 
area under the receiver operating characteristic curve (AUC) were calculated.
Results  The CNN model and radiologists had a sensitivity of 0.958 and 0.583–0.917, specificity of 0.925 and 0.604–0.771, 
and accuracy of 0.925 and 0.658–0.792, respectively. The CNN model had equal or better diagnostic performance compared 
to radiologists (AUC = 0.913 and 0.728–0.845, p = 0.01–0.14).
Conclusion  Deep learning with CNN shows high diagnostic performance to discriminate between benign and malignant 
breast masses on ultrasound.
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Purpose

Breast cancer is the most commonly diagnosed cancer and is 
the second leading cause of cancer-related death in women 
[1].

When a solid or cystic mass abnormality is detected on 
mammography or by clinical examination, ultrasound is 
used as a complementary tool [2]. Ultrasound also helps to 
guide the biopsy needle to the target area such that the tissue 
can be sampled and examined [3].

Breast ultrasound has been proven to be useful for differ-
entiating between benign and malignant masses. The Breast 

Imaging Reporting and Data System (BI-RADS) lexicon [4] 
was developed by the American College of Radiology to 
standardize the terminology for describing and classify-
ing breast lesions; good diagnostic performance has been 
reported [5]. Nevertheless, the morphologic features of 
benign and malignant lesions overlap substantially. Further-
more, the diagnosis of images is greatly dependent on the 
experience of the radiologist and, thus, significant interob-
server variability may occur [6].

Recently, a deep learning method using a convolution 
neural network (CNN) has attracted attention for its image 
pattern recognition and artificial intelligence strategy. Neural 
networks are one method used for deep machine learning, 
inspired by the structure and function of the brain. It mimics 
the mammalian visual cortex when processing data using an 
artificial neural network containing hidden layers. A convo-
lution layer in which images are processed with several types 
of filters is effective for pattern recognition of images [7, 8].

Although conventional machine learning algorithms 
require features from images that are extracted prior to 
learning, deep learning learns to extract meaningful features 
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from images and compute inferences and decisions autono-
mously. Therefore, a deep learning method with CNN uses 
all the information contained within the image. This learning 
method may have the potential to diagnose images without 
relying on the experience of a radiologist.

A deep learning method with CNN has been reported 
previously to achieve good performance in image pattern 
recognition. It has recently been applied to radiologic images 
to detect tuberculosis on chest X-rays, detect and diagnose 
breast tumors with mammography, and distinguish liver 
masses on dynamic contrast agent-enhanced CT images 
[9–11].

In this study, we aimed to investigate the diagnostic per-
formance of a deep learning method with CNN to discrimi-
nate between benign and malignant breast masses on ultra-
sound examination.

Materials and methods

Patients

The medical ethics committee of our hospital approved this 
retrospective study and waived the requirement for written 
informed consent.

In the present study, the inclusion criteria for enroll-
ing patients were: (a) those who had breast masses and 
underwent breast ultrasound examination at our hospital 
from January 2010 to December 2017 and (b) those whose 
masses were diagnosed as benign or malignant by pathol-
ogy or more than a 2-year follow-up. The following patients 
were excluded: (a) those who were treated with hormone 
therapy or chemotherapy and (b) those who were younger 
than 20 years of age. After reviewing the database of radi-
ology reports and clinical records at our institute, a breast 

radiologist (T.F. with 8 years of imaging experience) and a 
medical student (M.K) randomly selected breast masses of 
patients for this study.

Ultrasound imaging

Ultrasound examinations were performed by one of the five 
radiologists with 4- to 20-year experiences in breast ultra-
sound using an EUB-7500 scanner with a EUP-L54MA 
9.75-MHz linear probe (Hitachi Medical Systems, Tokyo, 
Japan), an Aplio XG scanner with a PLT-805AT 8.0-MHz 
linear probe (Toshiba Medical Systems, Tochigi, Japan), and 
an Aplio 500 scanner with a PLT-805AT 8.0-MHz linear 
probe (Toshiba Medical Systems, Tochigi, Japan). The radi-
ologists obtained transverse and longitudinal static images 
and measured the maximum diameter of the masses.

Data set

All solid and cystic masses, including simple cysts, were 
evaluated in this study. The ultrasound DICOM images were 
converted into jpeg using viewing software TFS-01 (Toshiba 
Medical Systems, Tochigi, Japan) and then trimmed to 
include skin to chest wall of size 256 × 256 pixels using 
Microsoft Paint (Microsoft, Redmond, Washington, USA) 
for analysis.

Table 1 shows the number of the patients, masses and 
images, patient’s age, and maximum diameter of the mass. 
For the training phase, we extracted the maximum 6 differ-
ent cross-sectional images of one mass and the maximum 
2 masses in one patient. For our deep learning training, we 
randomly distributed and used a total set of 947 images of 
240 masses in 237 patients (480 images of 97 masses in 95 
patients for benign masses, 467 images of 143 malignant 
masses in 142 patients). For the test phase, we extracted 

Table 1   Characteristics of patients and masses

Comparison was performed with the Mann–Whitney U test

Training data Test data All data

Benign Malignant All p value benign 
versus malig-
nant

Benign Malignant All p value benign 
versus malig-
nant

Training 
versus test 
data

Patients (n) 93 142 235 48 72 120
Masses (n) 96 144 240 48 72 120
Images (n) 480 467 947 48 72 120
Age
 Mean (y) 48.6 ± 11.8 59.3 ± 12.3 55.0 ± 13.1 p < 0.001 49.2 ± 12.8 62.3 ± 13.3 57.0 ± 14.5 p < 0.001 p = 0.241
 Range (y) 21–84 27–84 12–84 25–78 35–92 25–92

Maximum diameter
 Mean (mm) 13.9 ± 8.4 16.6 ± 7.1 15.5 ± 7.7 p < 0.001 12.8 ± 7.4 18.2 ± 9.2 16.1 ± 8.9 p < 0.001 p = 0.924
 Range (mm) 4–50 5–41 4–50 5–39 5–41 5–41
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only one image of one mass in one patient. A set total of 
120 images in patients (48 images of benign and 72 images 
of malignant masses) were used for test purposes. Table 2 
shows the histopathological results of the masses.

Deep learning with CNN

The computer used in our deep learning contained a graph-
ics processing unit GeForce GTX 1080 (NVIDIA, Calif, 
USA), a central processing unit Core i7-8700 (Intel, Calif, 
USA), and a commercially available deep learning appli-
cation DEEPstation DK-1000 (UEI, Tokyo, Japan) with a 
graphical user interface-based deep learning tool CSLAIER 
(Sony Computer Science Laboratories, Tokyo, Japan) that 
works on the framework Tensorflow (https​://www.tenso​
rflow​.org) and Chainer (http://chain​er.org). The deep learn-
ing model was constructed using the framework Chainer 
Ver 1.23.0, programing language Python 2.7.6 (https​://www.
pytho​n.org), and CNN architectures GoogleNet Inception v2 
[12, 13]. GoogleNet is a 22-layer deep net having 9 incep-
tion units after three convolutional layers and a fully con-
nected layer before the final output. GoogleNet Inception 
v2 is an improvement over GoogLeNet and has an essential 
deep learning technique called Batch Normalization, which 
is used for normalizing the value distribution before going 
into the next layer. There are two classes of problems in this 
study: benign and malignant lesions. Since GoogLeNet had 
1000 class outputs, we reduced the output to 2 class outputs 
and calculated the possibility for malignancy in the mass. 
An architecture without fine-tuning was used in supervised 
learning, with a batch size of 32 and 50 epochs, because of 
high accuracy and low loss of data (Fig. 1). After building 
the models, we examined the accuracy of the trained models 
in distinguishing benign from malignant masses using the 
test image sets.

Radiologist readout

In the present study, 3 breast radiologists (M.M. with 
4-year, T.F. with 8-year and K.K. with 20-year experience 
in breast imaging) also evaluated ultrasound images of the 
test data. Aside from knowing that the patients had a breast 
mass, they were blind to other pathological and clinical 
findings of this study. The assessed BI-RADS categories 
were reported as 2, 3, 4a, 4b, 4c or 5 by the readers.

Statistical analysis

All statistical analyses in this study were performed using 
the EZR software package version 1.31 (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan) [14] and 
the Visualizing Categorical Data (VCR) package version 
1.4-4 with graphical user interface for R software pack-
age (version 3.5.1; R Development Core Team, Vienna, 
Austria).

The data are presented as mean ± standard deviation. We 
performed a Mann–Whitney U test to compare patients’ 
characteristics (age and maximum diameter of the mass). 
Interobserver agreement was assessed using weighted k 
statistics and was interpreted as follows: < 0.20, poor, 
0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 good, and 
0.81–1.0 very good agreement [15].

The test data set was used to calculate the sensitivity, 
specificity, and accuracy for differentiating benign masses 
from malignant masses. Receiver operating characteristic 
(ROC) analyses were performed to calculate the area under 
the receiver operating characteristic curve (AUC) for per-
formance of the CNN models and radiologists readers in 
distinguishing benign masses from malignant masses. We 
considered p value of < 0.05 as statistically significant.

Table 2   Histopathology of masses

Training data Test data

Benign (n = 96) Malignant (n = 144) Benign (n = 48) Malignant (n = 72)

Fibroadenoma 30 Ductal carcinoma in situ 14 Fibroadenoma 17 Ductal carcinoma in situ 3
Intraductal papilloma 9 Invasive ductal cancer 111 Intraductal papilloma 8 Invasive ductal cancer 57
Mastopathy 14 Mucinous carcinoma 5 Mastopathy 5 Mucinous carcinoma 3
Phyllodes tumor (benign) 2 Invasive lobular carcinoma 5 Adenosis 1 Invasive lobular carcinoma 4
Fibrous disease 1 Apocrine carcinoma 5 Pseudoangiomatous stromal hyper-

plasia 1
Apocrine carcinoma 2

Lactating adenoma 1 Medullary carcinoma 1 Radial scar/complex sclerosing 
lesion 1

Invasive micropapillary carcinoma 2

Abscess 1 Adenoid cystic carcinoma 1 No malignancy 2  Malignant lymphoma 1
No malignancy 3 Phyllodes tumor (malignant) 1
Not known 35 (diagnosed 

by follow-up)
Adenomyoepithelioma with carci-

noma 1
Not known 13 (diagnosed by follow-

up)

https://www.tensorflow.org
https://www.tensorflow.org
http://chainer.org
https://www.python.org
https://www.python.org
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Results

Malignant masses are larger than benign masses and 
patients with malignant masses are significantly older than 
those with benign masses. There was no significant differ-
ence between training data and test data regarding patient’s 
age and tumor size (Table 1).

Table 3 summarizes the BI-RADS categories of the 
CNN model and three radiologists. Reader 1, reader 2, 
reader 3, and the CNN model required total of 29.0 min 
(14.5 s per case), 34.0 min (17.0 s per case), 19.0 min 
(9.5 s per case), and within 2.0 min (within 1.0 s per case) 
for reading the images. So, the reading time by the CNN 
is shorter than by each reader.

The CNN model tended to classify category 2, 3, or 5 to 
radiologists (CNN models; 87.5%, reader 1; 80.2%, reader 2; 
62.1% and reader 3; 61.7%). Table 4 summarizes the inter-
observer agreement of the CNN models and radiologists. 

Fig. 1   Accuracy and loss of the 
training data

Table 3   BI-RADS category diagnosed by readers and CNN model

BI-RADS breast imaging reporting and data system, CNN convolutional neural network

BI-RADS 
category

Possibility of 
malignancy 
(%)

Reader 1 Reader 2 Reader 3 CNN model

Benign (n) Malignant (n) Benign (n) Malignant (n) Benign (n) Malignant (n) Benign (n) Malignant (n)

2 0 25 14 15 1 3 0 21 1
3 –2 12 16 16 9 26 6 4 1
4a 2–10 6 15 12 20 9 11 6 0
4b 10–50 0 0 3 13 7 19 8 1
4c 50–95 3 10 2 19 1 16 5 23
5 95– 2 17 0 10 2 20 4 46

Table 4   Interobserver agreement

Comparison was performed with the weighted k statistics
CNN convolutional neural network

Reader 1 Reader 2 Reader 3 CNN model

Reader 1 1 0.3735 0.3147 0.2157
Reader 2 0.3735 1 0.4695 0.2796
Reader 3 0.3147 0.4695 1 0.2738
CNN model 0.2157 0.2796 0.2738 1
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Interobserver agreement of the BI-RADS categorical assess-
ment between the CNN model and radiologists (k = mean 
0.2564, range 0.2157–0.2737) was lower than between 
only radiologists (k = mean 0.3859, range 0.3147–0.4695). 
Table 5 depicts diagnostic performance and Fig. 2 demon-
strates the ROC of both the CNN model and radiologists’ 
performance. The CNN model and the three radiologists 
(reader 1, reader 2 and reader 3) showed a sensitivity of 
0.958, 0.583, 0.861, and 0.917, specificity of 0.875, 0.771, 
0.644, and 0.604, and accuracy of 0.925, 0.658, 0.775, and 
0.792 and AUC of 0.913, 0.728, 0.841, and 0.845, respec-
tively. Cut-off values were 66.7% for the CNN model and 2% 
for radiologists. The CNN model showed good diagnostic 
performance. Reader 1, with 4-year experiences in breast 
imaging, showed a lower AUC of 0.728 than the CNN model 
(p = 0.01), and reader 2, with 8-year experience, and reader 
3, with 20-year experiences in breast imaging, showed com-
parable AUCs of 0.841 and 0.845 to the CNN model, respec-
tively (p = 0.08 and 0.14). Figure 3 summarizes the 3 cases 
of this study.

Discussion

Machine learning is a field of artificial intelligence where 
computers are not explicitly programmed, but can analyze 
relationships of existing data and perform tasks based on 
these new data [7, 8]. In our study, we demonstrated that 
breast masses could be differentiated using ultrasound 
using a deep learning method with a CNN model, using 
deep learning with multiple hidden layers. We found that the 

Table 5   Sensitivity, specificity, accuracy and AUC of readers and 
CNN model

AUC​ area under the receiver operating characteristic curve, CNN con-
volutional neural network

Sensitivity Specificity Accuracy AUC​ p value 
(vs CNN 
model)

Reader 1 0.583 0.771 0.658 0.728 0.01
Reader 2 0.861 0.646 0.775 0.841 0.08
Reader 3 0.917 0.604 0.792 0.845 0.14
CNN model 0.958 0.875 0.925 0.913

Fig. 2   Receiver operating characteristic curve (ROC) of readers and 
convolutional neural network (CNN) model

Fig. 3   Images of the 3 cases of this study. a Example of a true nega-
tive assessed by all readers and CNN model. This fibroadenoma was 
diagnosed as category 3 by reader 1, category 2 by reader 2, category 
3 by reader 3, and category 1 by the CNN model. b Example of a 
false negative assessed by all readers and true positive evaluated by 
CNN model. This invasive ductal carcinoma was diagnosed as cat-

egory 2 by reader 1, category 3 by reader 2, category 3 by reader 3, 
and category 4c by the CNN model. c Example of a true negative 
assessed by readers and false positive evaluated by CNN model. This 
intraductal papilloma was diagnosed as category 2 by reader 1, cat-
egory 2 by reader 2, category 3 by reader 3, and category 5 by the 
CNN model
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CNN model was helpful in distinguishing between benign 
and malignant masses and showed good diagnostic perfor-
mance. Moreover, the reading time by the CNN model is 
clearly shorter than by each reader.

Breast ultrasound has been proven to be useful in dif-
ferentiating between benign and malignant masses and is 
widely used in daily practice [2, 3]. The BI-RADS lexi-
con standardizes how to describe terms and classify breast 
masses accordingly [5]. However, the morphologic features 
of benign and malignant masses sometimes overlap. Further-
more, diagnostic results depend greatly on the experience of 
the radiologist and, consequently, a large number of unnec-
essary biopsies and follow-ups are performed yearly [16].

There are some studies which report the usefulness of 
deep learning for diagnostic imaging of breast masses with 
ultrasound [17]. As far as we know, Han et al. employed the 
greatest number of samples to train a deep neural network 
with 4254 benign samples and 3154 malignant samples, and 
used GoogLeNet to distinguish the malignancy of breast 
masses on ultrasound, reporting an accuracy of 0.91 (91%), 
a sensitivity of 0.86, a specificity of 0.93, and an AUC over 
0.9 [18]. It is said that fine-tuning has a better performance 
than learning from scratch in many cases [19], and the fine-
tuning process was conducted by the ImageNet pretraining 
model in their study. On the other hand, our study, without 
the fine-tuning process, showed a high diagnostic perfor-
mance consistent with this previous work. In their research, 
radiologists were required to define the region of interest for 
the breast masses; however, in our study, it was not required 
as the images were only trimmed to include the skin to chest 
wall. Therefore, our research is simpler and more reproduc-
ible than their research.

Shi et al. used a deep polynomial network to extract tex-
tural features from 100 malignant and 100 benign masses on 
ultrasound images. Although the number of cases in their 
study is smaller than ours, it showed the same diagnostic 
accuracy of 92.4% as our study [20]. Stoffel et al. showed 
that deep learning software is able to differentiate between 
phyllodes tumors and fibroadenomas with good diagnostic 
accuracy (AUC = 0.73) and high negative predictive value 
(NPV = 100%). Radiologists showed comparable accuracy 
(AUC 0.60–0.77) but at lower NPV (64–80%) [21].

In this research, we did not examine the ability of seg-
mentation. However, a computer-aided tool for detection of 
breast masses using CNN has been developed and reported. 
Kumar et al. used Multi U-net algorithm which is based on 
CNN and segments the suspicious breast masses. It achieved 
a mean Dice coefficient of 0.82, a true-positive fraction of 
0.84, and a false-positive fraction of 0.01 [22].

To the best of our knowledge, our study was the first to 
directly compare diagnostic performance between the CNN 
model and radiologists to discriminate between benign and 
malignant breast masses using ultrasound. Reader 1, with 

4-year experiences in breast imaging had a lower AUC than 
the CNN, and reader 2, with 8-year experiences and reader 
3 with 20-year experiences in breast imaging showed com-
parable AUC to the CNN. The difference in radiologist per-
formance compared to CNN appears to be related to the 
number of years’ experience of each radiologist, as greater 
experience has led to a more accurate diagnosis of masses in 
our study. Our results imply that this CNN model could be 
helpful to radiologists to diagnose breast masses, especially 
those with only a few years of clinical experience.

In this present study, the CNN model had a tendency to 
diagnose masses as BI-RADS category 2, 3 or 5 compared to 
the radiologist. Regarding interobserver agreement, there is 
a higher correlation between only radiologists than between 
the CNN model and radiologists. We must assume that the 
CNN models and radiologists find and evaluate completely 
different aspects of the images. Human thought levels are 
limited to several dimensions. Conversely, existing deep 
learning technology can refer “thoughts” up to hundreds of 
dimensions [23]. This is known as “black box problem”, in 
which it is impossible for us to understand the process of 
how deep learning has reached any particular answer and 
the cause of false positive or negative. We require further 
research to understand how the CNN model detects and 
diagnoses these images, and the research may contribute to 
improvement of the diagnostic performance of radiologists.

This study has several limitations. First, this retrospective 
study was conducted at a single institution. Therefore, more 
extensive, multicenter studies are warranted to validate the 
findings of this study. Second, not all recurrent lesions were 
diagnosed using cytological or histological diagnosis. Third, 
we performed this study using images that were converted 
into 256 × 256 pixels. This image processing might result in 
a loss of information and, thus, influence the performance 
of the models. Fourth, because we used three ultrasound 
systems of two companies, there may have been a problem 
in the adaptability of learning outcome in testing using other 
ultrasound system images. So, further study is required to 
verify whether other ultrasound systems can also show a 
good performance.

Conclusion

Deep learning image analysis with CNN showed high 
diagnostic performance to distinguish between benign and 
malignant masses on breast ultrasound. This CNN model 
could help radiologists to diagnose the malignancy of breast 
masses.
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