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Abstract

In analyzing failure data pertaining to a repairable system, perhaps the most widely
used parametric model is a nonhomogeneous Poisson process with Weibull intensity,
more commonly referred to as the Power Law Process (PLP) model. Investigations
relating to inference of parameters of the PLP under a frequentist framework abound in
the literature. The focus of this article is to supplement those findings from a Bayesian
perspective, which has thus far been explored to a limited extent in this context. Main
emphasis is on the inference of the intensity function of the PLP. Both estimation and
future prediction are considered under traditional as well as more complex censoring
schemes. Modern computational tools such as Markov Chain Monte Carlo are exploited
efficiently to facilitate the numerical evaluation process. Results from the Bayesian
inference are contrasted with the corresponding findings from a frequentist analysis,
both from a qualitative and a quantitative viewpoint. The developed methodology
is implemented in analyzing interval-censored failure data of equipments in a fleet of
marine vessels.

Key Words: Repairable systems, Power law process, Intensity function, Bayesian in-
ference, Markov chain Monte Carlo, Aggregated data.

1 Introduction

In analyzing failure data from a repairable system, possibly the single-most popular paramet-
ric model that has been used in practice is the Nonhomogeneous Poisson Process (NHPP)
with Weibull intensity, more commonly referred to as the Power-Law Process (PLP) model.
This model, introduced and investigated by Crow (1974), evolves as a stochastic formulation
of a certain physical feature observed by Duane (1964) in his study of the failure process
of various complex mechanical devices. Mathematically, the intensity function of the PLP
assumes the form

λ(t) = (β/θ)(t/θ)β−1, θ > 0, β > 0, t > 0.

The corresponding cumulative intensity function Λ(t) =
∫ t

0
λ(s) ds = (t/θ)β is linear with

time ‘t’ on a log-log scale, conforming to Duane’s (1964) observation. For this reason, PLP
is often termed as the “Duane Model” by reliability engineers and statisticians. Since Crow’s
(1974) seminal work on PLP, numerous articles dealing with the inferential aspects of the
model have appeared in the statistical and engineering literature. Mathematical tractability
and well-documented inference procedures have attributed to the model’s popularity among
the practitioners. The model is quite flexible in that it incorporates both growth (β > 1)
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and decay (β < 1) in reliability. The case of no growth (Homogeneous Poisson Process)
corresponds to β = 1.

The essential ingredient of a NHPP is its intensity function, also referred to as its rate
of occurrence of failure (ROCOF). For a general point process N(t) denoting the number of
failures in the time interval [0, t], the intensity function λ(t) is defined as

λ(t) = lim
∆t−→0

P [N(t + ∆t)−N(t) ≥ 1]

∆t
. (1)

The expression in (1) can be interpreted as the probability of atleast one failure per unit time
in an infinitesimal time interval (t, t+∆t]. Under the assumption that ties (in failure times)
occur only with probability zero, a premise we adopt in the current article,

λ(t) =
d

dt
E [N(t)] ,

E [N(t)] denoting the mean number of failures in [0, t].
The focus of this article is the inference concerning the intensity function of a special

point process, namely, the PLP. Both estimation of current intensity and prediction of future
intensity are considered in detail from a Bayesian viewpoint. The current intensity refers to
the achieved value of the intensity function at the termination point of the developmental
testing phase. This quantity can be thought of as an initial estimate of the ROCOF at
the subsequent operational testing phase in which the system failures are assumed to be
governed by a Homogeneous Poisson Process (at least initially) (c.f. Bain and Engelhardt,
1980, Crow, 1982). An objective evaluation of the current intensity is extremely crucial to
reliability engineers in deciding the extent of effectiveness of a developmental program in
achieving a planned reliability goal.

There has been considerable work relating to the estimation of current intensity of a
PLP. Some of the earlier work based on the exact and approximate distributions of the
maximum likelihood estimators (MLE) include Lee and Lee (1978), Bain and Engelhardt
(1980), and Crow (1982). Higgins and Tsokos (1981) consider a quasi-Bayes estimation
procedure, while Rigdon and Basu (1988, 1990) investigate the minimum mean-squared
error estimation within the class of scaled MLE’s. As Rigdon and Basu (1990) indicate,
however, the scaling optimizer depends on the unknown parameter β. To circumvent this
problem, they take β = 1, which they justify in view of the fact that it serves as the boundary
for both the growth and decay scenarios. Sen and Khattree (1998) present a more rigorous
development of the estimation problem based on a minimum risk criterion as well as the
probabilistic Pitman-closeness criteria under a wide choice of loss functions. Calabria et al.
(1988) and Qiao and Tsokos (1998) derive other estimators of the current intensity of a PLP.

Much of the investigation thus far on estimating the current intensity of a PLP has
been undertaken under a frequentist framework. By contrast, in this article, we propose a
Bayesian approach to this problem. The advantages of the Bayesian approach are manifold.
Clearly, the Bayesian framework provides a natural, unified environment for carrying out
the estimation and prediction process based on finite-sample calculations rather than the
large-sample approximation often needed for the frequentist case. Moreover, it can read-
ily incorporate any strong prior information in the inference process if one such is available.
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Most importantly, in the specific case of inference for a PLP, the Bayesian approach alleviates
certain problems encountered in the frequentist framework. In the context of observing the
failure process of a repairable system, two types of inspection schemes are typically adopted
in practice. The schemes, referred to as “time truncation” and “failure truncation”, closely
resemble “Type I” and “Type II” censoring, respectively, in that the process terminates
either at a predetermined time or a number of failures. The inference for the two sampling
schemes (time and failure-truncated) are intrinsically different in the frequentist case. In the
time-truncated case, there is no clear-cut solution available for the current intensity estima-
tion. The major obstacle lies in the lack of any pivotal quantity for inference purposes. To
circumvent this, Bain and Engelhardt (1980) resort to an ad-hoc fiducial argument. For the
failure-truncated case on the other hand, existence of suitable pivotals facilitate the inference
of current intensity. But, since the current intensity is evaluated at the termination point,
in the failure-truncated case it is a random quantity, and thus the premise of ‘estimation’ is
ill-defined in the frequentist context. Happily, these problems do not surface in the Bayesian
paradigm. A unified solution works for either sampling scenario and unlike much of the
frequentist work, the Bayesian solution is not restricted to a class of estimators (e.g. class
of scaled MLE’s).

The article is organized as follows. In Section 2, the Bayesian formulation is put forth in a
formal manner. Section 3 deals with the posterior analysis of current intensity under specific
choices of informative as well as noninformative priors that have been widely used in practice.
The problem of prediction is undertaken in Section 4. It is demonstrated how a simulation-
based approach, coupled with appropriate data augmentation facilitates the analysis. In
Section 5, we focus on the extension of the inference methods to interval-censored data
arising from successive failures of a repairable system that are assumed to follow a PLP. In
Section 6, we implement the developed methodology in analyzing equipment failures in a
fleet of marine vessels where the data acquisition process is carried out in periodic intervals.
We indicate in Section 7 how the prescribed methodology can be adapted to the inference
problem that involves multiple copies of a repairable system.

2 Bayesian Formulation

For simplicity of exposition, we consider the failure process of a single system, under either
time or failure-truncated sampling scheme. The methods and techniques we describe can
easily be adopted to the situation dealing with multiple copies of a repairable system. De-
noting by 0 < t1 < t2 < · · · < tn, the n successive observed times to failure of the system,
the likelihood function can be expressed as:

L(θ, β) =
n∏

i=1

λ(ti) exp
[−

∫ y

0

λ(t) dt
]

=

(
β

θ

)n
[

n∏
i=1

(
ti
θ

)β−1
]

exp

[
−

(y

θ

)β
]

, (2)
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where

y =

{
tn, if process is terminated at the nth failure.
t0, if process is truncated at a fixed time t0.

In our development, we tacitly assume that n ≥ 1.
Several alternative prior models for the parameters of a PLP have been entertained in

the literature. In this article, we shall consider a set of fully noninformative as well as a fully
informative class of priors both of which are deemed quite reasonable in the context under
consideration. The class of noninformative priors we consider is defined as

π(θ, β) ∝ (θβδ)−1, θ > 0, β > 0, . . . , (3)

where δ is a known quantity. Considering the distribution of the time to first failure of a PLP,
the cases δ = 0 and 1 in (3) can both be motivated as instances of the Jeffrey’s class of priors
for location-scale family of distributions (c.f. Bar-Lev et al., 1992). The cases corresponding
to δ = 0 and δ = 1 have further been motivated by Lingham and Sivaganesan (1997) as
reference priors for various hypothesis testing scenarios involving the growth parameter β.
While we do not restrict δ solely to those two numbers, it turns out (to be seen in the next
section) that we do need δ to be strictly less than the sample size n for the propriety of the
posterior of λ(y).

The class of informative priors we consider in this article have been introduced by Guida
et al. (1989). They interpret the mean number of failures up to a predetermined time T ,

namely, Λ(T ) =
∫ T

0
λ(t) dt = (T/θ)β to be a parameter of interest, the prior information

on which may be easily elicitated. A reasonable choice for the probability density function
(pdf) for Λ(T ) is Gamma (a, b), conforming to

π (Λ(T )) ∝ [Λ(T )]a−1 exp[−bΛ(T )].

Note that in the above and in the sequel, a Gamma (α1, α2) refers to a Gamma random
variable with pdf f(x) ∝ xα1−1e−α2x, x > 0. An independent prior pdf g(β) of β then yields
the joint prior of (θ, β) in the form

π(θ, β) ∝ βθ−βa−1T βa exp[−b(T/θ)β]g(β). (4)

Indeed (4) constitutes a generalization of the prior model used by Kuo and Yang (1996) in
the sense that their model conforms to the special case of (4) when T = 1, a single unit of
measured time. Choices for g(β) may include any reasonable density with support on the
positive real line. Guida et al. (1989) argue for a uniform prior for β over a positive support
(β1, β2). Following Kyparisis and Singpurwalla (1985), one can also consider a more general
Beta prior for β of the form

g(β) =
Γ(k1 + k2)

Γ(k1)Γ(k2)

(β − β1)
k1−1(β2 − β)k2−1

(β2 − β1)k1+k2−1
, 0 ≤ β1 < β < β2. (5)

In what follows, we shall investigate the posterior inference of the intensity using both the
noninformative and informative choice of priors.
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3 Posterior Analysis of Current Intensity

In this section, we assimilate the results concerning the statistical inference of the current
intensity λ(y) evaluated at the truncation time y. We categorize the findings separately
under the prior choices described in the previous section. This helps immensely in the
comparison across different prior formulations as well as with the frequentist MLE–based
results.

3.1 Analysis Under Noninformative Prior

Under the noninformative prior choice of (3), the posterior inference of current intensity λ(y)
of a PLP yields tractable, closed-form results. Further, the findings are remarkably similar
to the frequentist results for the failure truncated case. The key step in the derivation,
borrowed from Sen and Khattree (1998), is provided next. For facilitation of comparison,

results in this section are expressed with the aid of λ̂(y) = n2 {y ∑n
i=1 log(y/ti)}−1

, the MLE
of λ(y).

Lemma 3.1 (Sen and Khattree, 1998): A posteriori under the prior model of (3), λ(y)
d
=

(λ̂(y)/4n2)UV , where U, V are independent chi-square random variables with 2n and 2(n−δ)
degrees of freedom, respectively. Note that the posterior is improper for δ ≥ n.

For δ = 1, the result is identical to that for the failure-truncated case in the frequentist
scenario. Note, however, that unlike the frequentist case, the result here continues to hold
under time-truncated case and for any acceptable choice of δ. Several consequences of Lemma
3.1 are immediate. For instance, the Bayes estimator of λ(y) under squared error loss is given
by

λB
1 (y) =

n− δ

n
λ̂(y) (6)

Clearly, for δ = 0, λB
1 (y) matches the MLE λ̂(y). Also, for δ = 1, λB

1 (y) results in the
estimator proposed by Higgins and Tsokos (1981) from a “heuristic” Bayesian viewpoint.
By choosing other appropriate values of δ, alternative frequentist estimators proposed in the
literature (c.f. Calabria et al., 1988; Qiao and Tsokos, 1998) are recovered from (6). The
posterior median of λ(y), namely,

λ̃B
1 (y) = (λ̂(y)/4n2)med (UV ),

corresponds to the Bayes estimator under absolute error loss. λ̃B
1 (y) is also the unique

Bayesian Posterior Pitman Closest estimator (c.f. Ghosh and Sen, 1991) in the sense that
it is closer to λ(y) in comparison to any other estimator of λ(y) with a posterior probability
larger than 50%. It is also clear from Lemma 3.1 that a 100(1 − α)% equal-tailed credible
interval for λ(y) is given by [

λ̂(y)

4n2
qα/2,

λ̂(y)

4n2
q1−α/2

]
, (7)
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where qγ is the 100 γth percentile of the distribution of the product UV . It follows quite easily

from Lemma 3.1 that asymptotically, as n → ∞,
√

n

(
λ(y)

λ̂(y)
− 1

)
d→ N(0, 2) a posteriori,

and thus, by contrast to (7), a 100(1−α)% large-sample Bayesian Credible interval for λ(y)
is given by:

λ̂(y)

(
1∓

√
2

n
Z1−α/2

)
,

where Zγ is the 100γth percentile of standard normal distribution. This is identical to the
classical large-sample result obtained by Crow (1982) for the failure-truncated case.

By choosing alternative loss functions, one can also derive as Bayesian estimators, other
frequentist estimators suggested in the literature on the basis of somewhat ad-hoc consid-
erations. Table 1 provides, under the present construct, a list of certain loss functions and
the corresponding Bayesian estimators along with their frequentist analogs. In the table a
denotes a generic parameter and â its estimator.

Loss Function Bayes Estimator of λ(y) Frequentist Analog

L1(a : â) = (â− a)2 λB
1 (y) = n− δ

n λ̂(y)

Higgins and Tsokos (1981)
(δ = 1)
Calabria et al. (1988)
(δ = 2, 3)
Qiao and Tsokos (1998)
(δ = 5)

L2(a; â) =
(

â
a − 1

)2

λB
2 (y) =

(n− 2)(n− δ − 2)
n2 λ̂(y) Rigdon and Basu (1988) (δ = 1)

L3(a; â) = a
â
− log

(
a
â

)
− 1 λB

3 (y) = n− δ
n λ̂(y) Same as L1.

L4(a; â) = â
a − log

(
â
a

)
− 1 λB

4 (y) =
(n− 1)(n− δ − 1)

n2 λ̂(y) Rigdon and Basu (1988) (δ = 1)

Table 1: Bayesian Estimators of λ(y) Under Various Loss Functions

The loss functions presented in Table 1 have quite meaningful physical interpretations.
L2 corresponds to the standard weighted squared-error loss. Both L3 and L4 stem from
the consideration of treating the deviations on either side asymmetrically. L3 reflects a
situation when one imposes heavier penalty on underestimation compared to overestimation.
L4 simply corresponds to the reverse scenario. Alternative motivations of L3 as a LINEX-
type loss (Varian, 1975; Zellner, 1986) or from consideration of entropy distance between
probability distributions (Sinha and Ghosh, 1987) are also available in the literature. The
most noteworthy point in this discussion is that unlike the frequentist estimators which are
either (a) derived on ad-hoc or heuristic grounds, or (b) obtained as optimal in a restricted
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class of estimators, the corresponding Bayesian estimators are founded on firm, rigorous
justification and are optimal over the class of all estimators under either sampling scenario.

3.1.1 Large-sample Comparisons

The remarkable similarity between the frequentist and the Bayesian inference with the non-
informative prior motivates a study of the frequentist performance of the Bayesian estimators
derived in this case. Towards that end, we present two results in this section. The first relates
to the estimation of current intensity of the PLP. We also restrict attention to the ‘failure-
truncated’ scenario, as the large-sample results in this scenario can be studied directly as a
function of the growing sample size n, which is a non-random entity.

Theorem 3.1 For the failure-truncated scheme under the sampling distribution, the quantity
√

n

(
λB

1 (tn)
λ(tn)

− 1

)
converges to a normal random variable with mean zero and variance 2,

as the sample size n grows large.

Proof : By virtue of (6), note that

√
n

(
λB

1 (tn)

λ(tn)
− 1

)
=
√

n

(
λ̂(tn)

λ(tn)
− 1

)
− δ√

n

λ̂(tn)

λ(tn)
(8)

Using Crow’s (1982) result, the first term on the right of (8) converges to a N(0, 2) random
variable as n →∞. It also implies that the second term on the right hand side is op(1). By
an application of Slutsky’s Theorem we have the result. ¤

Although the result is presented for λB
1 , it is evident from Table 1 that the same large-

sample behavior is exhibited by the other Bayes estimators as well. We now turn to the
inference for the model parameters. Although it is not the main focus of the current article,
the large-sample result presented nicely supplements a corresponding well-known result in
the frequentist context. Further, it helps to identify and understand the extent of similarity
between the frequentist and the Bayesian calculations in the present situation. The large-
sample result is described for the parameterization (µ = θ−β, β) rather than in the original
(θ, β) formulation. This parameterization has been adopted by various researchers, and is
precisely the parameterization in which the corresponding MLE large-sample result has been
derived. In the remaining part of this subsection, (µB, βB) denote the Bayes estimators of

(µ, β) under squared-error loss, and (µ̂, β̂) indicate the corresponding MLE’s.

Theorem 3.2 For the failure-truncated scheme under the sampling distribution, as n →
∞,

(√
n(log n)−1(µB − µ),

√
n(βB − β)

)′
converges in distribution to a (singular) bivariate

normal with mean vector 0 and variance-covariance matrix

∑
=

[
µ2 −µβ
−µβ β2

]
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Proof : Under the noninformative prior (3), a posteriori β and µtβn are independently dis-

tributed as Gamma
(
n− δ, n/β̂

)
and Gamma (n, 1), respectively; a fact essentially inherent

in the proof of Theorem 6.1 in Sen and Khattree (1998). Consequently, the Bayes estimator
of β under squared-error loss is

βB =
n− δ

n
β̂

and thus √
n

(
βB − β

)
=
√

n
(
β̂ − β

)
− δ√

n
β̂ (9)

On the other hand, note that

µB = E
µ|data[µ]

= E
β|data

[
t−β
n E

(
µtβn|β, data

)]

= nE
β|data

[
t−β
n

]

= n

(
1 +

β̂ log tn
n

)−(n−δ)

which follows by the posterior distributional properties of β and µtβn. Consequently,

log µB = log n− (n− δ) log

[
1 +

β̂ log tn
n

]

= log n− β̂ log tn +
δ

n
β̂ log tn +

n− δ

n

(
Higher powers of

β̂ log tn
n

)

= log µ̂ +
δ

n
β̂ log tn +

n− δ

n

(
Higher powers of

β̂ log tn
n

)
, (10)

where the last equality derives from the functional relationship µ̂ = nt−β̂
n between the cor-

responding MLE’s (c.f. Bhattacharyya and Ghosh, 1991). Under the sampling distribution,
µtβn is distributed as a Gamma (n, 1) random variable, and thus, a simple application of
Central Limit Theorem yields

β log tn = log n− log µ + Op(n
−1/2).

We now have

β̂ log tn
n

=
β̂

β

[
log n− log µ + Op(n

−1/2)

n

]
= Op

(
log n

n

)
, (11)

where we use the fact that β̂/β
P→ 1 as n → ∞. Similar argument applies to the higher

powers of (β̂ log tn)/n, and so in view of (10) and (11), we arrive at
√

n

log n

(
log µB − log µ

)
=

√
n

log n
(log µ̂− log µ) + op(1)

= −β−1
√

n(β̂ − β) + op(1). (12)
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The last equality is taken directly from Bhattacharyya and Ghosh (1991). As a consequence
of delta method and (12),
√

n(log n)−1(µB − µ) =
√

n(log n)−1µ
(
log µB − log µ

)
+ op(1) = −µβ−1

√
n(β̂ − β) + op(1).

(13)

Since 2nβ/β̂ ∼ χ2
2(n−δ), it follows immediately that

√
n(β̂ − β)

d→ N(0, β2) as n → ∞, and

the required results follow in view of (9) and (13). ¤

Remark

The proof of Theorem 3.2 essentially demonstrates the asymptotic equivalence of the MLE’s
and the Bayesian estimators. The curious feature of the inference result is the singular-
ity of the asymptotic variance-covariance matrix. The crucial observation underlying the
singularity is given by the fact that

√
n(log n)−1(µ̂− µ) + µβ−1

√
n(β̂ − β) = op(1),

i.e. a linear combination of (non-uniformly) scaled MLE’s converges to zero in probabil-
ity. An identical relation holds when the MLE’s are replaced by the Bayesian estimators.
Fortunately, this does not pose any inferential problem in this case. The existence of piv-
otals facilitates exact joint inference for µ, β, and one does not have to take recourse to the
large-sample results. Specifically, one can construct joint confidence region of the parame-
ters based on the facts that the quantities 2nβ/β̂ and 2µtβn are independently distributed
as chi-square random variables with 2(n− 1) and 2n degrees of freedom, respectively. The-
orem 6.1 of Sen and Khattree (1998) demonstrates that under the prior choice of (3), also

aposteriori 2nβ/β̂ and 2µtβn are independent chi-square random variables with 2(n− δ) and
2n as respective degrees of freedom. Thus, joint posterior credible region is also obtained
without difficulty. The non-standard asymptotic result, nevertheless, presents interesting
insights into the inference of an otherwise well-behaved model.

3.2 Analysis Under Informative Prior

We now consider the class of informative priors given in (4) and carry out the corresponding
posterior inference for λ(y). A result analogous to Lemma 3.1 is provided next.

Lemma 3.2 Under the prior model of (4), a posteriori, λ(y)
d
= y−1U1U2, where conditionally

U1 given U2 is distributed as Gamma
(
n + a, [1 + b(T/y)U2 ]

)
, and U2 has a pdf h given by:

h(u2) ∝ un
2

{
n∏

i=1

(ti/T )

}u2

[b + (y/T )u2 ]−(n+a)g(u2).

Proof : Using (2) and (4), the joint posterior of (θ, β) can be expressed as:

π(θ, β|data) ∝ βn+1

{(
n∏

i=1

ti

)
T a

}β

g(β)× θ−β(n+a)−1 exp

{
−

(y

θ

)β
[
1 + b

(
T

y

)β
]}

.

(14)
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Using the change of variable u1 = (y/θ)β and u2 = β, and noting that the jacobian of the

transformation is J = yu−1
2 u

−u−1
2 −1

1 , the joint posterior of (u1, u2) can be derived from (14)
as

π(u1, u2|data) ∝ un
2

{( n∏
i=1

(ti/y)

)
· (T/y)a

}u2

g(u2)

× un+a−1
1 exp {−u1[1 + b(T/y)u2 ]} .

Upon observing that λ(y) = y−1u1u2, the result follows. ¤

From Lemma 3.2, the Bayes estimator of λ(y) under squared-error loss is obtained as

λB
∗ (y) = y−1E

U2|data


 (n + a)U2

1 + b
(

T
y

)U2


 . (15)

Unlike the noninformative case, the expression in (15) has to be numerically evaluated and it
does depend on the prior choice g(β) of β. For the uniform prior of Guida et al. (1989) or the
beta prior of Kyparisis and Singpurwalla (1985), (15) involves a one-dimensional numerical
integration over a bounded interval. Alternatively, one can also adopt a simulation based
approach to estimate the mean in (15) based on samples from the posterior pdf of β using
standard rejection algorithms.

The case where T equals the truncation point y deserves a special mention as it provides
an interesting analog to the noninformative case. Note that since the major role of T is in
the prior construction, this scenario is only conceivable in the time-truncated situation. It
is easy to see from Lemma 3.2 that in this case U1 and U2 in the lemma are distributed
independently and (15) simplifies to

λB
∗ (y) = {y(1 + b)}−1(n + a)E[U2|data],

namely, a multiplier of the marginal posterior mean of β. Further, if a priori β is distributed
as a Gamma (α1, α2) random variable, we have U1 and U2 distributed a posteriori as in-
dependent Gamma (n + a, 1 + b) and Gamma (n + α1, α2 +

∑n
i=1 log(y/ti)), respectively.

Consequently, λB
∗ (y) reduces to

λB
∗ (y) = y−1 (n + a)(n + α1)

{α2 +
∑n

i=1 log(y/ti)}(1 + b)
.

This is in conformity with the noninformative scenario, where one can write

λ(y)
d
= n {y ∑n

i=1 log(y/ti)}−1
U1U2, U1, U2 being independent Gamma (n, 1) and Gamma

(n− δ, n) variables, respectively. Consequently, in this special case, the inference results for
the informative and noninformative prior cases are virtually identical.

4 Prediction of Future Intensity

In this section, we shall provide the Bayesian predictive analysis of the intensity function
of a PLP at a future failure. Several authors have investigated prediction issues for a PLP
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model. Kyparisis and Singpurwalla (1985) and Calabria et al. (1990) have focused on
the predictive distribution of future failure times of a PLP. In addition, Bar-Lev et al.
(1992) also discuss the prediction of number of failures in a future given time interval.
Calabria and Pulcini (1996) and Beiser and Rigdon (1997) take up the prediction problem
under the assumption that the failure process of the system follow a homogeneous Poisson
process upon termination of the observation period. In this section we will develop the
predictive inference of the intensity function at a future failure time under the assumption
that a PLP prevails both for the observation period as well as in the future. The novelty
in our solution lies in the application of a simulation-based Markov Chain Monte Carlo
(MCMC) approach, popularized by Gelfand and Smith (1990), that in some cases simplifies
the prediction problem substantially by avoiding high-dimensional numerical integration
(or approximation), and in general presents a viable recourse for handling the problem of
prediction.

The main objective here is to develop predictive inference for λ(tn+m, θ, β) = (β/θ)(tn+m/θ)β−1,

the value of intensity function at the mth future failure subsequent to the observation period,
m ≥ 1. The advantage of the MCMC approach is that since it estimates the joint predictive
distribution of (tn+m, θ, β), inference on any function of the triplet is available in virtually
an automated way. So the solution we provide is more general than the prediction of a single
quantity of interest.

As before, we integrate the failure and time-truncated schemes in the same framework.
Note first that conditionally given the data and (θ, β), the pdf of tn+m assumes the form

p(tn+m|data;θ, β) ∝ βθ−βtβ−1
n+m[(tn+m/θ)β − (y/θ)β]m−1

× exp[−(tn+m/θ)β + (y/θ)β], tn+m > y. (16)

Consequently, the joint predictive pdf of (tn+m, θ, β) can be derived as

p(tn+m, θ, β|data) = p(tn+m|data; θ, β)× p(θ, β|data), (17)

where p(θ, β|data) refers to the posterior pdf of (θ, β). The distribution of any function of
(tn+m, θ, β) can then be obtained from (17) by an appropriate transformation followed by
integration over a suitable space. Evidently, a tractable, closed-form solution is hard to
obtain even for a simple prior choice. Below we document the findings from the MCMC
approach applied to this problem in the context of the prior choices entertained in this
article.

Noninformative Priors

A truncated pdf such as the one in (16) may be a potential cause for simulational problem
for the MCMC approach. To circumvent this, we introduce the latent (unobserved) vari-
ables Tn+1, Tn+2, . . . , Tn+m−1. Using the prior in (3), the joint density of the data and the
unobservables is then

p(data, tn+1, . . . , tn+m, θ, β) ∝ βn+m−δθ−(m+n)β−1

(
n+m∏
i=1

ti

)β−1

exp[−(tn+m/θ)β],

0 < t1 < · · · < tn+m; θ > 0, β > 0. (18)

11



Note that the form in (18) is substantially simpler than (16) and facilitates the analysis to
a large extent. For the MCMC approach, we need to generate samples from the appropriate
full conditionals which are surprisingly simple in this case and are provided in Steps 1–2
below.

Step 1: Conditional of the Latent Variables

Given θ, β and the data, the random variables X1 = (Tn+1/θ)
β − (y/θ)β, X2 =

(Tn+2/θ)
β− (Tn+1/θ)

β, . . . , Xn+m = (Tn+m/θ)β− (Tn+m−1/θ)
β are i.i.d. Exponential

with mean 1. This is a direct consequence of the fact that for a general NHPP with
mean function Λ(t), the random variables Λ(Ti) − Λ(Ti−1), i = 1, 2, . . . constitute
i.i.d. realizations from a standard Exponential. Also this property holds irrespective
of whether we are dealing with a failure-truncated (y = tn) or a time-truncated
(y = t0) case.

Step 2: Conditional for (θ, β)

Given the rest, the distribution of W1 = (Tn+m/θ)β and β are independent with
W1 having a Gamma(n + m, 1) distribution and β following a Gamma (n + m −
δ,

∑n+m
i=1 log(tn+m/ti)) distribution. This follows by appealing to (18) and applying

a direct transformation to (θ, β).

MCMC iterations thus follow successive sample generations using the distributions in
Step 1 and Step 2. In view of the known forms of the conditionals, the generation is fast and
easy. For each triplet of generated (tn+m, θ, β), λ(tn+m, θ, β) (or any other function for that
matter) can be calculated. All subsequent predictive calculations (e.g., distribution, mean,
median, prediction interval) are based on a large MCMC output obtained after a sufficient
burn-in.

Informative Prior

We now indicate the nuances of the predictive inference with the prior choice of (4)

Step 1: This is identical to Step 1 for the noninformative choice.

Step 2: The distribution of W1 = (Tn+m/θ)β and β are no longer independent. The joint
conditional of W1 and β given the rest is obtained as

p(w1, β|rest) ∝ βn+m

{ n+m∏
i=1

(ti/tn+m)

}β

(T/tn+m)aβg(β)

× wm+n+a−1
1 exp{−w1[1 + b(T/tn+m)β]}. (19)

It is evident from (19) that the conditional distribution of W1 given the rest is Gamma
(n + m + a, [1 + b(T/tn+m)β]) analogous to Lemma 3.2.
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Step 3: In this situation, additional steps are required to generate samples from the full
conditional pdf of β given the rest. From (19), it follows that this conditional can be
written as:

f(β|rest) ∝ βn+m

{ n+m∏
i=1

(ti/tn+m)

}β

(T/tn+m)aβ

× exp[−w1b(T/tn+m)β]g(β)

≡ k(β)g(β). (20)

The pdf corresponding to (19) is non-standard and suitable rejection algorithms are
required to sample from it. Note, however, that k(β) is a positive, log-concave function
of β thus having a unique positive maximum M which can be obtained by solving a
nonlinear equation in β. One reasonable rejection method may then simply consist of
the steps:

3.a Generate β from the prior g(β).

3.b Generate u independently from a uniform (0, 1).

3.c Accept β if u ≤ k(β)/M , otherwise reject β.

Alternatively, a weighted bootstrap with weights proportional to k(βi), where βi is a
random sample from g(β), can be used to generate random variates from a suitable
approximation of f . In cases where the maximum M falls far off the prior support of
g(β), the bootstrap method, albeit approximate, may be a faster algorithm to employ.
Both these methods are explained in detail in Smith and Gelfand (1992). Also note
that a log-concave prior g(β) renders f(β|·) to be log-concave also and in those cases
an efficient algorithm such as Adaptive Rejection Sampling (ARS) (Gilks and Wild,
1992) can be employed.

5 Dealing with Aggregated Data

In engineering, biomedical and economic applications, one frequently encounters situations
where the observation process is carried out at predetermined inspection times. In the past
forty or so years numerous researchers have made methodological advances in the study of
aggregated, grouped or interval-censored data which simply consists of counts of failed and
censored observations within the inspection intervals. The focus of research in this area
ranged from estimation and testing issues for specific life-distributions to distribution-free
inference based on the theory of rank statistics. The traditional premise of aggregated
data corresponds to the scenario where the data yielding the counts conform to a random
sample from an unknown distribution. By contrast, in the study of interval-censored data
for repairable systems, the context at hand, the counts in successive intervals correspond to
failure times that are stochastically dependent. Triner and Phillips (1986) provide such an
example of aggregated data consisting simply of number of failures of a system of generators
on a marine vessel in nonoverlapping intervals of time (measured in years). Kyparisis and

13



Singpurwalla (1985) allude to an application in railroad engineering that necessitates analysis
of interval censored data arising from a repairable system.

Kyparisis and Singpurwalla (1985) provide an approximate Bayesian inference for interval
data arising from a repairable system whose failures are governed by a PLP. Let nj denote

the observed number of failures in the jth time-interval (lj1, lj2], lj2 > lj1, and j = 1, 2, . . . , k.
Neither is it necessary to have the intervals of equal length nor is it assumed that the intervals
are successive, i.e., lj2 = lj+1,1. The likelihood function of (θ, β) under the PLP model is
given by

L(θ, β) ∝
k∏

j=1

[(
lj2
θ

)β

−
(

lj1
θ

)β
]nj

× exp

{
−

k∑
j=1

[(
lj2
θ

)β

−
(

lj1
θ

)β
]}

. (21)

A direct Bayesian analysis using (21) will generally be cumbersome and lead to intractable
results. The solution provided by Kyparisis and Singpurwalla (1985) is based on numerical
approximation. By contrast, our approach, based on MCMC, involves simulation and pro-
vides a general recourse to tackling interval data in the analysis of repairable systems. For the
Bayesian implementation, we introduce the latent variables Tj1, Tj2, . . . , Tjnj

; j = 1, . . . , k,

which represent the successive exact times to failure in the jth inspection interval. Denoting
by t the ensemble of Tji’s, the augmented pdf assumes the form

p(t; n1, . . . , nm|θ, β) =
k∏

j=1

nj∏
i=1

λ(tji) exp

[
k∑

j=1

∫ lj2

lj1

λ(t) dt

]

= (β/θβ)
∑k

j=1 nj

[
k∏

j=1

nj∏
i=1

tβ−1
ji

]
exp

{
−

k∑
j=1

[(
lj2
θ

)β

−
(

lj1
θ

)β
]}

. (22)

Equation (22) is in a more tractable form compared to (21) and is essentially obtained as
a product of m time-truncated likelihoods within the given intervals. In this sense, (22) is
a generalization of the expression in (2). In the simulation steps, additional care needs to
be taken due to the presence of two sets of intrinsically different latent-variables, namely
the Tji’s; ones which were realized but were unobserved, and the Tn+c’s, c = 1, · · · ,m; the

predicted ones. Here, as before n =
∑k

j=1 nj denotes the total number of observed failures.
Step 1 of the conditional inference that is key to the MCMC algorithm now includes a new
distributional result related to the latent variables Tji’s.

New Step

Conditionally, given the data and the other parameters, the random variables
Tj1, Tj2, · · · , Tjnj

are distributed as order statistics of size nj from the pdf

f(t) ∝ λ(t)I(lji < t < lj2)

=
βtβ−1

lβj2 − lβj1
I(lji < t < lj2),

j = 1, · · · , k, where I denotes the indicator function.
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Rest of the conditional inference is same as those of Step 1–Step 3 detailed in Section 4.
Unlike the complete data case, statistical inference of current intensity for interval-censored
data do not yield closed-form results. It can, however, be approached in a way identical to
that for the predictive inference, by simply taking m=0 in the end-results. The simulation
approach provides a nice, easy and efficient alternative to a direct analysis based on (20).
Note that the existence of simple conditional inference in this case facilitates the efficiency of
the simulation procedure in spite of the possibly large number of latent variable generation.

The latent variable approach in this context provides an alternative, interesting way to
deal with agggregated data in general. For instance, in the case when one is interested
in obtaining MLE’s, the latent variables provide the groundwork for the EM algorithm
(Dempster et al., 1977). Using the conditional distribution of Tji’s given the counts nj

(incomplete data), for the PLP model, the EM algorithm reduces to a one-variable iterative
step

n

[
(
β(k+1)

)−1 −
∑m

j=1 lβ
(k+1)

j2 log lj2 −
∑m

j=1 lβ
(k+1)

j1 log lj1∑m
j=1 lβ

(k+1)

j2 −∑m
j=1 lβ

(k+1)

j1

]

= n
(
β(k)

)−1 −
m∑

j=1

nj

lβ
(k)

j2 log lj2 − lβ
(k)

j1 log lj1

lβ
(k)

j2 − lβ
(k)

j1

(23)

and a non-iterative step

θ̂ =

[
n−1

(
m∑

j=1

lβ̂j2 −
m∑

j=1

lβ̂j1

)]1/β̂

, (24)

where β(k), β(k+1) are the estimates of β at the kth, (k + 1)st cycles, respectively, and
β̂ is the convergence point (MLE) of the sequence {β(k)} obtained from (23). Substantial
simplification occurs in both the Bayesian and the frequentist calculations when the intervals
are indeed successive and l11 = 0.

6 An Example

We implement the methodologies developed in this article in analyzing the failure data of
a mechanical equipment fitted to a fleet of ships. The data originally described by Triner
and Phillips (1986) and Sweeting and Phillips (1995), is reproduced in Table 2, and consists
simply of the number of equipment failures over periodic yearly intervals. The mechanical
equipment can be a set of two or more similar individual items per ship, for instance, the
auxiliary generators. The failures are typically defined as noncompliance to operational
guidelines or degradation above a threshold. A failed equipment is assumed to be repaired
instantaneously in view of the short duration of repair times in comparison to the time
between failures. Consequently, a minimal repair Nonhomogeneous Poisson Process model
is deemed appropriate for this dataset. As evidenced from Table 2, the data collection
process was initiated after a certain time has elapsed since the original installation of the
equipment in question. This feature is not uncommon with failure history documentation
in marine vessels presumably due to the fact that fleet owners often begin data acquisition
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subsequent to instituting a preventive maintenance scheme. Interval censoring in this case
is clearly a result of unsystematic record keeping.

Inspection Interval Number of Failures
(years)

1.5− 2.5 4
2.5− 3.5 5
3.5− 4.5 4
4.5− 5.5 2
5.5− 6.5 4
6.5− 7.5 11
7.5− 8.5 19
8.5− 9.5 10

9.5− 10.33 14

Table 2: Failures of mechanical equipment in a fleet of ships

Bayesian analysis is carried out for this example under the setting described in the article.
We summarize here the results concerning the inference of the intensity function. Both
informative and noninformative prior choices are considered. As indicated in Sweeting and
Phillips (1995), the equipment under consideration is expected to exhibit a reliability decay
over time. Incorporating this in the model, we entertain two distinct informative prior
choices for g(β). For the purposes of discussion, the noninformative and the two informative
prior models are henceforth referred to as P1, P3, and P4, respectively. P3 assumes a
Gamma (0.01, 0.01) distribution for β − 1. The standard deviation of 10 makes the prior
choice sufficiently diffused so that the posterior analysis is not driven too strongly by the
prior model. The second informative prior model P4 assumes the Kyparisis and Singpurwalla
(1985) choice of (5) for β on the support (1, 5). This entails, (β−1)/4 to have a standard Beta
distribution with parameters k1, k2. For our analysis, we chose k1 = k2 = 0.05, translating
into a mean of 0.5 and a variance of 0.238 for the standard Beta, once again rendering it
to be a rather diffused choice. For illustration purposes, for both P3 and P4, T is chosen
to be 1 year and Λ(1) is assumed to have a Gamma (0.01, 0.01) distribution. With a more
systematic elicitation procedure, a stronger prior information on Λ can be obtained, thereby
improving the accuracy of the analysis.

Using codes written in Fortran, for each of the prior models, fifty-one thousand MCMC
samples of the triplet (θ, β, tn+m) have been generated and five thousand of them are elected
for the summary calculations with a burn-in of one thousand and a lag jump of ten. We
used the ML estimates θ̂ = 1.464, β̂ = 2.203 as the starting value of each chain. We have
also used other starting points in order to verify stability and convergence of the generated
chains. Table 3 exhibits posterior summary calculations for the current and predicted inten-
sity λ(·) both noninformative (with δ = 1) as well as the informative prior choices. Apart
from the prior models mentioned above, the table also includes calculation for a specific prior
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Current Intensity
Prior Mean Median SD 95% Credible Interval
P1 18.540 18.363 3.089 [12.975, 25.264]
P2 18.667 18.426 3.120 [13.228, 25.427]
P3 23.394 23.181 3.418 [17.388, 30.731]
P4 23.792 23.570 3.567 [17.405, 31.540]

m=5
P1 18.938 18.758 3.139 [13.449, 25.632]
P2 18.851 18.628 3.168 [13.326, 25.540]
P3 24.184 23.970 3.431 [18.104, 31.381]
P4 24.528 24.334 3.470 [18.243, 31.722]

m=10
P1 19.699 19.481 3.382 [13.718, 26.818]
P2 19.757 19.548 3.296 [13.899, 26.934]
P3 25.362 25.116 3.586 [18.970, 32.930]
P4 25.549 25.292 3.659 [19.123, 33.308]

Table 3: Posterior summary calculations for current and future intensity functions for the
fleet equipment failure data

model, denoted by P2, where β and Λ(10.33) are assumed to be i.i.d. realizations from a
Gamma (0.01, 0.01) distribution. As indicated in Section 3.2, this special choice makes the
posterior analysis analogous to the noninformative case. This observation is duly supported
by the numerical calculations. The main distinction between the noninformative and the
informative cases corresponding to models P3 and P4 is in the posterior mean/median esti-
mates. The right shift in the central measures for the informative prior choices is evidently
due to the added information for β. The precision of the estimates on the other hand, as
measured by the standard deviation, does not change much across the prior choices as well
as the prediction region.

The histograms in Figure 1 for the predicted intensity at the first and fifth future failure
indicate a mild right-skew in the overall distribution. A distinctly unimodal feature of the
distribution is apparent in each case. By contrast to the frequentist approach, the simulation
based Bayesian route provides more complete and unified framework for estimation and
prediction that does not require any large-sample approximation whatsoever.

7 Analysis of Multiple Systems

We have presented the entire development in this article in the context of observing failures
for a single repairable system. It is quite common in reliability experiments to study multiple
copies of the similar system simultaneously. The objective then is to draw inference on the
underlying process via a judicious integration of the collective data. For example, one may
be interested in predicting the performance of a new system yet to be installed on the basis
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of the past performance of similar systems. Let us now indicate how the inference methods
detailed for a single system extend to the multiple systems case without much difficulty.

Assume that m identical systems are under investigation. Let tij denote the ith observed

failure time on the jth system which has been observed until time yj, where yj = tjnj
, if

the process is terminated at the nth
j failure; or yj = t0j, a predetermined time at which the

process was time-truncated. Let nj be the number of observed failures for the jth system
and N =

∑m
j=1 nj be the total number of failures over all systems. With the assumption

of conditional independence of the system failure processes given the parameter values, the
likelihood function under PLP is

L(θ, β) =
m∏

j=1

{ nj∏
i=1

λ(tij)

}
exp[−Λ(yj)]

= (β/θβ)N

( m∏
j=1

nj∏
i=1

tij

)β−1

exp

[
−

m∑
j=1

(yj/θ)
β

]
. (25)

Structurally, (25) is somewhat similar to (2) and thus, the inference methods detailed in this
article work in an analogous, albeit more involved, manner. Indeed, several special cases
and ramifications of (25) yield results that are immediate extensions of those for the single
system case. For instance, consider the special case of a time-truncated scheme, when all
systems are singly truncated at the same point y, i.e., yj = y for j = 1, 2, . . . , m. Then,
under the noninformative prior choice of (3), it follows that a posteriori, β and (y/θ)β are

distributed independently according to a Gamma

(
N − δ,

∑
j

∑
i log(y/tij)

)
and a Gamma

(N,m), respectively. Consequently, a simple extension of Lemma 3.1 assumes the form:

λ(y)|data
d
=

(
λ̂(y)

4N2

)
χ2

(2N)χ
2
(2(N−δ)).

Here λ̂(y), as before, denotes the MLE of λ(y). Thus, the inference in this case, for the
informative prior as well, is virtually identical to that for the case of a single system.

One can deal with nonidentical (but independent) systems in an analogous manner. In
fact, if the difference between the systems is manifested through difference in the parameters,
then the problem essentially reduces to that of single copies of different systems, and in spirit,
is the same as that presented earlier in the article. A compromise, somewhat in the middle
of dealing with completely identical and nonidentical systems, is to assume different scale
parameters (θj) for the different systems while maintaining that the same growth parameter
(β) acts on them. One can carry out the relevant Bayesian calculations after appropriately
modifying (25). Rigdon and Basu (2000) present an Empirical Bayes analysis for nonidentical
PLP models under this framework. One prior model, where tractable results are obtained,
is given by a noninformative choice of the form

π(θ1, . . . , θm, β) ∝ β−δ

m∏
j=1

θ−1
j ,
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obtained by applying conditional independence of θj given β and adopting a noninformative
choice both for β and θj. Analogous to the single system case with (3), here also, we have
the result that a posteriori β and (yj/θj)

β, j = 1, . . . , m are mutually independent, each with
an appropriate Gamma distribution.

8 Concluding Remarks

In this article, we have presented a simple sampling-based approach in dealing with the
Bayesian prediction problem for a PLP. Kuo and Yang (1996) provide a Bayesian treatment
for the NHPP in a generic manner. They concentrate on the characterization of a general
NHPP and prescribe the use of MCMC approach for the Bayesian computation. We, how-
ever, focus on a particular model that is one of the most commonly used ones for hardware
as well as software failures pertaining to a repairable system. Under quite reasonable and
general prior choices, we provide detailed analysis for the prediction problem. Our analysis
on one hand covers the previous studies undertaken in this context, and on the other, has
made significant advances into dealing with more complex sampling schemes. The approach
presented here is quite general in the sense of being adaptable to any prior choice as well as
the inference of any process parameter.

We conclude our discussion with an allusion to a practical problem that constitutes the
motivational premise for this work. Estimation of current intensity at the end of the de-
velopmental phase is useful from the viewpoint of obtaining a baseline for the operational
phase. However, the main underlying assumption that the same NHPP or a HPP with a
known intensity prevails in the operational stage, may be quite unrealistic for many systems.
For example, it is well known in the defense industry that for environmental or other ex-
ternal reasons, various typical defense systems experience failure modes in the operational
testing phase those have not surfaced in the controlled developmental phase. The standard
analyses do not take into account this change in the failure process in any formal manner.
A meaningful integration of the failure data obtained from developmental and operational
phase and its subsequent analyses constitute an open research area that needs to be explored
in detail.

References

[1] Bain, L. J., and Engelhardt, M. (1980). Inferences on the parameters and current system
reliability for a time truncated Weibull process. Technometrics, 22, 421–426.

[2] Bar-lev, S. K., Lavi, I., and Reiser, B. (1992). Bayesian inference for the power law
process. Annals of Institute of Statistical Mathematics, 44, 623–639.

[3] Beiser, J. A., and Rigdon, S. (1997). Bayes prediction for the number of failures of a
repairable system. IEEE Transactions on Reliability 46, 291–295.

[4] Bhattacharyya, G. K. and Ghosh, J. K. (1991) Asymptotic properties of estimators in a
binomial reliability growth model and its continuous-time analog, Journal of Statistical
Planning and Inference, 29, 43–53.

19



[5] Calabria, R., Guida, M., and Pulcini, G. (1988). Some modified Maximum Likelihood
Estimators for the Weibull Process. Reliability Engineering and System Safety, 23, 51–
58.

[6] Calabria, R., Guida, M., and Pulcini, G. (1990). Bayes estimation of prediction intervals
for a power law process. Communications in Statistics–Theory and Methods, 19, 3023–
3035.

[7] Calabria, R., and Pulcini, G. (1996). Maximum likelihood and Bayes prediction of
current system lifetime. Communications in Statistics–Theory and Methods, 25, 2297–
2309.

[8] Crow, L. H. (1974). Reliability analysis for complex repairable systems. In: Proschan,
F., Serfling, R. J. (Eds.), Reliability and Biometry, 379–410.

[9] Crow, L. H. (1982). Confidence interval procedures for the Weibull process with appli-
cations to reliability growth. Technometrics, 24, 67–72.

[10] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of Royal Statistical Society, Series B,
39, 1–38.

[11] Duane, J. T. (1964). Learning curve approach to reliability monitoring. IEEE Transac-
tions on Aerospace, 2, 563–566.

[12] Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities, Journal of the American Statistical Association, 85, 398–409.

[13] Ghosh, M., and Sen, P. K. (1991). Bayesian Pitman closeness. Communications in
Statistics – Theory and Methods, 20, 3729–3750.

[14] Gilks, W. R. and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling,
Applied Statistics, 41, 337–348.

[15] Guida, M., Calabria, R., and Pulcini, G. (1989). Bayes inference for a non-homogeneous
Poisson process with power intensity law. IEEE Transactions on Reliability, 38, 603–
609.

[16] Higgins, J. J., and Tsokos, C. P. (1981). A quasi-Bayes estimate of the failure intensity
of a reliability growth model. IEEE Transactions on Reliability, R-30, 471–475.

[17] Kuo, L., and Yang, T. Y. (1996). Bayesian computation for nonhomogeneous Poisson
processes in software reliability. Journal of the American Statistical Association, 91,
763–773.

[18] Kyparisis, J., and Singpurwalla, N. (1985). Bayesian inference for the Weibull process
with applications to assessing software reliability growth and predicting software fail-
ures. In L. Billard (ed.), Computer Science and Statistics: the Interface, 57–64.

20



[19] Lee, L., and Lee, S. K. (1978). Some results on inference for the Weibull process. Tech-
nometrics, 20, 41–45.

[20] Lingham, R. T., and Sivaganesan, S. (1997). Testing hypotheses about the power law
process under failure truncation using intrinsic Bayes factors. Annals of Institute of
Statistical Mathematics, 49, 693–710.

[21] Qiao, H., and Tsokos, C. P. (1998). Best efficient estimates of the intensity function of
the power law process. Journal of Applied Statistics, 25, 111–120.

[22] Rigdon, S. E., and Basu, A. P. (1988). Estimating the intensity function of a Weibull
process at the current ime: failure truncated case. Journal of Statistical Computation
and Simulation, 30, 17–38.

[23] Rigdon, S. E., and Basu, A. P. (1990). Estimating the intensity function of a power
law process at the current time: time truncated case. Communications in Statistics –
Simulation, 19, 1079–1104.

[24] Rigdon, S., and Basu, A. P. (2000). Statistical methods for the reliability of repairable
systems. John Wiley and Sons: New York.

[25] Sen, A., and Khattree, R. (1998). On estimating the current intensity of failure for the
power-law process. Journal of Statistical Planning and Inference, 74, 253–272.

[26] Sinha, B. K., and Ghosh, M. (1987). Inadmissibility of the best equivariant estima-
tors of the variance-covariance matrix and the generalized variance under entropy loss.
Statistics and Decisions, 5, 201–227.

[27] Smith, A. F. M., and Gelfand, A. E. (1992). Bayesian statistics without tears: a
sampling-resampling perspective. The American Statistician, 46, 84–88.

[28] Sweeting, T. J., and Phillips, M. J. (1995). An application of nonstandard asymptotics
to the analysis of repairable-systems data. Technometrics, 37, 428–435.

[29] Triner, D. A., and Phillips, M. J. (1986). The Reliability of Equipment Fitted to a
Fleet of Ships. In Proceedings of the 9th Advances in Reliability Technology Symposium,
Bradford, Warrington, U.K.: Atomic Energy Authority.

[30] Varian, H. R. (1975). A Bayesian approach to real estate assessment. In: Fienberg, E.,
Zellner, A. (Eds.), Studies in Bayesian Econometrics and Statistics, in honor of L. J.
Savage. North-Holland, Amsterdam, 195–208.

[31] Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions.
Journal of the American Statistical Association, 81, 446–451.

21



Figure 1: Predicted intensity at the first and the fifth future failures for ship-equipment
failure data with prior choices P1 (top row), P3 (middle row), and P4 (bottom row)
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